Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2021-01-22 12:30 to 2021-01-26 11:30 | Next meeting is Tuesday Dec 23rd, 10:30 am.
Existing searches for cosmic axions relics have relied heavily on the axion being non-relativistic and making up dark matter. However, light axions can be copiously produced in the early Universe and remain relativistic today, thereby constituting a Cosmic $\textit{axion}$ Background (C$a$B). As prototypical examples of axion sources, we consider thermal production, dark-matter decay, parametric resonance, and topological defect decay. Each of these has a characteristic frequency spectrum that can be searched for in axion direct detection experiments. We focus on the axion-photon coupling and study the sensitivity of current and future versions of ADMX, HAYSTAC, DMRadio, and ABRACADABRA to a C$a$B, finding that the data collected in search of dark matter can be repurposed to detect axion energy densities well below limits set by measurements of the energy budget of the Universe. In this way, direct detection of relativistic relics offers a powerful new opportunity to learn about the early Universe and, potentially, discover the axion.
Accurate modelling of redshift-space distortions (RSD) is challenging in the non-linear regime for two-point statistics e.g. the two-point correlation function (2PCF). We take a different perspective to split the galaxy density field according to the local density, and cross-correlate those densities with the entire galaxy field. Using mock galaxies, we demonstrate that combining a series of cross-correlation functions (CCFs) offers improvements over the 2PCF as follows: 1. The distribution of peculiar velocities in each split density is nearly Gaussian. This allows the Gaussian streaming model for RSD to perform accurately within the statistical errors of a ($1.5\,h^{-1}$Gpc)$^3$ volume for almost all scales and all split densities. 2. The PDF of the density field at small scales is non-Gaussian, but the CCFs of split densities capture the non-Gaussianity, leading to improved cosmological constraints over the 2PCF. We can obtain unbiased constraints on the growth parameter $f\sigma_{12}$ at the per-cent level, and Alcock-Paczynski (AP) parameters at the sub-per-cent level with the minimal scale of $15\,h^{-1}{\rm Mpc}$. This is a $\sim$30 per cent and $\sim$6 times improvement over the 2PCF, respectively. The diverse and steep slopes of the CCFs at small scales are likely to be responsible for the improved constraints of AP parameters. 3. Baryon acoustic oscillations (BAO) are contained in all CCFs of split densities. Including BAO scales helps to break the degeneracy between the line-of-sight and transverse AP parameters, allowing independent constraints on them. We discuss and compare models for RSD around spherical densities.